
March 31, 2003
MSF Build System

Lorenzo Flückiger

Developers Documentation
1

Table of Contents

Requirements .. 2

How to use .. 2

Configuration.. 4

How it works... 5

Variables used by the MSF build system.. 6

Dependencies .. 9

Libraries naming convention for linking search and prerequisites expression. 10

Automatic Windows/Unix filenames handling... 10

Requirements
Requirements

The MSF build system uses the standard gmake program available on all MSF target

platforms: SGI-IRIX, Sun-SunOS, Intel-Linux and Intel-Windows1.

How to use

The MSF build system is based on a set of partial makefiles defining variables and
rules that allow the developer to benefit from a powerful build system with a
minimum of effort. All these makefiles are located in $MSF_HOME/makes.

The principle of the MSF build system is the following: the developer defines a set
of variables which will be the input of the predefined rules as well as the final targets
(libraries and/or executable). By including the top level partial makefile, most of the
work is automagically done.

The simple example illustrated on Figure 1 demonstrates a typical usage of the MSF
build system.

Consider the four files Base.h, Base.cpp, Deriv.h, Deriv.cpp that will
form a library named msf_test, which is part of the MSF standard libraries. The
program Program.cpp will become an executable which is also one of the

1. The Cygwin package is needed to build MSF under Window, even if the Visual-C++ compiler is
used.

Figure 1: Build example of a simple set of source files

msf_test
library

Program
Exec.

Test
Exec.

Build Directory

Source Files
Directory

Base.h Base.cpp

Deriv.h Deriv.cpp

Program
.cpp

Test.cpp

Program
Exec.

Binaries Install
Directory

msf_test
library

Libraries Install
Directory
2 MSF Build System

How to use
standard programs provided by MSF. Also, the directory contains a Test.cpp
program which is used only locally.

The first step is to define the input variables that will control the build system (see
Section “Variables used by the MSF build system” for a full description of these
variables):

LIB_SRC := Base.cpp Deriv.cpp # source file(s) for the library

LIB_NAME := msf_test # library name

EXEC_SRC := Program.cpp # MSF program source file(s)
TEST_SRC := Test.cpp # Test program source file(s)

LIBS_TO_INSTALL := msf_test # library(ies) to install
PROGS_TO_INSTALL := Program # executrable(s) to install

Then additional flags for the compilation / link can be specified by adding them to
the list of the standard variables:

LDLIBS += -lmsf_test # Libraries to link with
LDFLAGS += $(MSF_LIB_DIR) # Path to these libraries

The key point is then to include the top level makefile of the MSF build system1

(located into the $MSF_HOME/makes directory):

include ../make.incl

At this point, several new variables have been automatically generated. they can be
used in the remaining portion of the makefile (examples are given for a Linux build,
with MSF_HOME set to /projects/MSF).

• TEST_EXE contains the name of all the test programs: Linux/Test

• EXEC_EXE contains the name of all executables: Linux/Program

• MSF_PROGS contains the target destination names of the programs to install:
/projects/MSF/bin/Linux/Program

• MSF_LIBS contain the target destination names of the libraries to install:
/projects/MSF/lib/Linux/libmsf_test.a

These variables are a convenience to define what the makefile has to produce. For
example, simply specifying the following rule:

default: $(MSF_LIBS) $(MSF_PROGS) $(TEST_EXE)

will compile and install the libraries and programs. This will be achieved by
following the MSF rules which define how to generate the dependencies, how to
compile, how to link and how to install files. Note the TEST_SRC is a separate
variable allowing to exclude test programs from the MSF_PROGS installable

1.Note that the MSF build system require the input variable to be defined before
including make.incl.
MSF Build System 3

Configuration
programs. To also build the test programs, TEST_EXE have been included in the
default rule.

Note the MSF build system requires a default rule to work correctly (the first target
which is called build_goal inside make.common simply calls the default
target). If the default rule is not present in the user makefile, a message like:
 “no rule to make target ‘default’ needed by ‘build_goal’” will be issued.

In addition to the rule specifying the main target, an additional dependency rule will
probably be needed:
$(EXEC_EXE): $(LOADLIBES)
It specifies that the program files to be produced are depending on the library
composed of the LIB_SRC objects files (and then will be linked against).

At this point, simply typing make on the command line will build everything in the
current directory. This example makefile is provided in the
MSF_HOME/makes/tests directory.

Configuration

ENVIRONMENT
VARIABLES

The MSF build system uses several environment variables that have to be defined.
The user is free to define these variables using his preferred method, however, a file
called msfsource is provided and can be configured to reflect the current setup.

MSF_HOME Defines the top directory of the current MSF tree

RTI_HOME &
RTI_BUILD_TYPE

Defines the location of the RTI to use

FLTK_HOME Define the location of the FLTK package (only needed by the components requiring
a GUI based on the Fast Light ToolKit)

In addition to these environment variables, a set of more fine tuning parameters can
be adjusted in the platform dependant makefiles: make.Linux, make.IRIX, etc.
There the compiler/linker can be reconfigured as well as the various options
dependant on a particular platform. It should be noted that the compiler command to
invoke can also be defined with the environment variable COMPILE_CMD, which
case will override the one defined in the makefile system.

PLATFORM DEPEND
BUILD

The MSF build system is configured to work on multiple platforms with the same
source code: all dependencies, object files, libraries and programs are generated in
sub-directories reflecting the platform name. By default MSF uses the convention
described in Table 1.

However, when there is a need to mix multiple flavors of compiler/libraries versions
on the same platform (like gcc-2.95 or gcc-3.1 under a Suse 8.1 Linux), more
characterized directory names are required. The MSF build system supports this by
setting the environment variable MSF_USES_FULL_ARCH. For example with a
4 MSF Build System

How it works
cshell:
setenv MSF_USES_FULL_ARCH 1

In this latter case, one will have to create into the makes directory a makefile
reflecting the particular architecture (it also can be simply linked to one of the
default platform dependant makefile file). For example if MSF_USES_FULL_ARCH
is used on a Linux system running on an Pentium processor and using gcc version
2.95 and glibc 2.2, a configuration file named make.ix86-linux-gcc2.95-
glibc2.2 will be required.

The architecture dependant names are generated with a shell script archname.sh
located in the MSF_HOME/makes directory.

archname.sh Return the architecture name from queries to the system/compiler and is used to
generate platform dependent directories. The modifier -a can be added if fully
qualified architecture names are required. Do archname.sh -h to see all the options.

BUILD CONFIGURATION The build configuration regarding optimization and type of libraries is also set in the
platform dependent makefiles. They define a variable BUILD_CONFIG which
contains the characteristics of the desired build. Currently only two options are
available:

• Optimized or Debug version set with optimized and debug

• Dynamic or Shared libraries set with dynamic and static

For example the following definition in make.Linux:
BUILD_CONFIG := debug static
will build MSF using static libraries with debug information.

How it works

The MSF build system is based on a set of partial makefiles having distinct roles:

make.incl Is the top level makefile to include from the working makefile. This make portion
mainly does some sanity checking and includes all the other necessary makefiles.

make.arch_name Defines a set of variables (compiler name, file extensions or compile flags) that are
platform dependent. This file can be modified to meet specific platform needs.

Platform Sub-directory name

Any Linux on Intel processors Linux

Any IRIX on MIPS processors IRIX

WindowsNT, Windows2000 Win32

Table 1: Platform dependant directory names
MSF Build System 5

Variables used by the MSF build system
make.dirs Note: make.dir is not used any more in the current version of MSF. Some of the
important directories definition are simply put in the platform dependant makefiles.
Defines all the directories used by the MSF build system. This makefile uses the
variables MSF_HOME, RTI_HOME, RTI_BUILD and FLTK_HOME and can be
included by external project makefiles for convenience.

make.rules Is the core of the build system. It expands input variables into complete filenames
and contains all the rules to make the various targets.

make.common Contains some common rules like how to clean directories or list the files. This
make file is not included by default and it is to the user to insert it into his own
makefile if he would like to use it (which is strongly encouraged). As
make.common contains mainly PHONY targets, it should be included at the end of
the user makefile: include ../make.common

make.docs Contains instructions relative to the documentation generation process.

As mentioned, the behavior of the build system is really determined by
make.rules. Figure 2 shows how the rules cascade from initial targets during the
build process.

Variables used by the MSF build system

To help MSF developers to keep simple makefiles, the MSF main make system uses
a set of variables as inputs for its rules.

INPUT VARIABLES

LIB_SRC List of sources files needed to build the library.

LIB_NAME Name of the library to be generated. This name is the base name of the library. The
makefile system will expending it according the build platform and configuration.
For example, if LIB_NAME is set to test, the full library name under Linux when
building shared libraries will become: libtest.so.

LIB_PATH Optional path where to put the local library. This is a modifier for the LOADLIBES
generated variable. By default the library goes in a platform dependant sub-directory
from the current makefile path. By defining LIB_PATH, it is possible to redirect this
library somewhere else. This is particularly useful when multiple directories with
their own makefile all participate in building the same library.

EXEC_SRC List of source files that will generate executables intended to become part of MSF
distributable. To actually have these executable installed, you will have to list the
program names into PROGS_TO_INSTALL and define MSF_PROGS has one of the
makefile target. Note that without defining PROGS_TO_INSTALL, EXEC_SRC
can be used the same way than TEST_SRC.
6 MSF Build System

Variables used by the MSF build system
TEST_SRC List of source files that will generate test programs. TEST_SRC could be use even if
some programs are not test programs, but are designed to remain local to the
working directory.

Figure 2: Propagation of the rules in the MSF build system

rule:

prerequisite:

action:

install the executables

executables exist locally

copy programs to install
destination

/MSF/bin/linux/Program

./linux/Program

rule:

prerequisite:

action:

install the libraries

libraries exists locally

copy libraries to install destination

/MSF/lib/linux/libmsf.a

./linux/libmsf.a

rule:

prerequisite:

action:

create the library

all objects file exist

create the archive

./linux/libmsf.a

./linux/Base.o & Deriv.o

rule:

prerequisite:

action:

build a program

program obj and other deps. exist

link the objects to produce an
excutable

./linux/Program

./linux/Program.o & libmsf.a

rule:

prerequisite:

action:

compile an object file

source file + depend file (included)

compile the source file

./linux/Program.o

Program.cpp

rule(*):

prerequisite:

action:

include dependencies files

dependencies files exist

Call the rule to make the
dependencies files

-include $(DEPEND_FILES)

./linux/Program.d

rule:

prerequisite:

action:

generate dependency files

source file

generate dependency files

./linux/Program.d

Program.cpp

(*) is not a real rule, but gmake will try to create any
included file if it does not exist

arrows indicate that the execution of current rule
implies the execution of another rule to satisfy
the prerequisite
MSF Build System 7

Variables used by the MSF build system
LIBS_TO_INSTALL A set of libraries name. The libraries listed here will be build and copied into the
INSTALL_LIB_DIR (defined in make.dirs) directory. The libraries names
follow the same rule than LIB_NAME.

PROGS_TO_INSTALL A set of programs to install. The programs listed here will be build and copied into
the INSTALL_BIN_DIR (defined in make.dirs) directory. The program names
should not contain any extension which will be added automatically by the makefile
according to the platform, For example, if PROGS_TO_INSTALL is set to
MyProgram, then under Windows the program name will become
MyProgram.exe.

From these variables, a set of generated variables are produced by the makefile.
Some of these variables are for internal makefile use mainly, while others will be
used by the component developer in his makefile.

GENERATED
VARIABLES

LIB_OBJS List of object files composing the library (normally not used in your makefile). The
LIBO_OBJS files are composed with the build architecture directory and the correct
extension. For example File.cpp becomes Linux/File.o.

EXEC_OBJS List of object files corresponding to the MSF executables. Same rules as for
LIB_OBJS applies.

TEST_OBJS List of object files corresponding to the test programs. Same rules as for LIB_OBJS
applies.

EXEC_EXE List of produced MSF programs. The generated names contain the output directory
and the correct file extension (.exe under Windows)

TEST_EXE List of produced test programs. Same rules as for EXEC_EXE applies.

LOADLIBES The full name of the library to be produced (including optional LIB_PATH, build
architecture, library prefix and library suffix):
mylib -> Linux/libmylib.so.

MSF_LIBS List of libraries to install with the full path to the output directory.

MSF_PROGS List of the program to install with the full path to the output directory.

DEPEND_FILES A list of all the dependency files: it is generated from LIB_SRC, TEST_SRC and
EXEC_SRC.

STANDARD VARIABLES The MSF build system uses the standard make conventions for the variables used in
compile and link rules. MSF makefiles only add arguments to these variables,
meaning that one can add parameters by setting the corresponding environment
variable. For example, if the developer wants a special build for testing purpose with
the preprocessor argument “-DMY_TEST”, it can do so without modifying the
8 MSF Build System

Dependencies
makefile by setting it in the shell:
setenv CPPFLAGS -DMY_TEST

The following standard variables are used and can then be augmented with
environment variables:

CXX The compiler to use. This is the only environment variable which is taken as is (not
added to the makefile one) if it is defined. For example, under Linux, the
architecture makefile defines the compiler to be g++. If one wants to test with a
another compiler, it could do:
setenv CXX /opt/experimental/gcc
(Note that this example is a bad idea of how to use another compiler: it will be better
to have the PATH and LD_LIBRARY_PATH variable set correctly for an alternate
compiler)

CPPGFLAGS The preprocessor flags (for example -DNDEBUG)

INCLUDES Directive for files search used by the preprocessor (for example -I../GUI)

CXXFLAGS The compiler flags (for example -g)

LDFLAGS Flags for the linker (for example -L../GUI/Win32)

LDLIBS Libraries to link with (for example -lmygui)

Dependencies

The dependencies are generated automatically by the make process. There is no need
to specify explicitly make depend each time a change in the dependency has
occurred. The dependencies is updated each time it is needed.

The behavior uses the makefile remake capability of gmake (see GNU make manual,
section 4.12: Generating Prerequisites Automatically): for each source file
(file.cpp) a corresponding dependency file ($(OS)/file.d) is generated.
The dependency file file.d specifies the dependencies of the object file
(file.o) on all the source files required, and includes in addition a dependency of
the file itself (file.d) on the same set of source files to ensure that the
dependencies are up to date. Finally the list of dependency files is simply included in
the top makefile (with some additional tests to avoid including dependencies for
special targets like clean our count):

-include $(DEPEND_FILES)

A typical dependency file will look like this (e.g. Linux/Base.d):

Linux/Base.d Linux/Base.o: Base.cpp Base.h
MSF Build System 9

Libraries naming convention for linking search and prerequisites expression
Libraries naming convention for linking search and
prerequisites expression

The libraries are expressed in the MSF build system with the form -lmylib. It
allows the linker to search for libraries names libmylib.so, libmylib.so.1

or libmylib.a1. In addition, it allows to define the same compact library name on
all platforms, without worrying about the extensions.

But most important, the same -lmylib syntax can be used in the prerequisite of rules.
For example, if a program Program.exe depends on the library libmylib.lib
the dependency could be expressed like:
Program.exe: Proram.cpp -lmylib
(Note that this syntax is not platform portable, but just here for illustration)

To allow this behavior, the build system expands the libraries names with their full
path by searching for these libraries in a set of directories. The MSF build system
uses the vpath command to instruct makefile to search for MSF build libraries in
their install directory.

If a developer need to add directories to the search path because some of his libraries
are not located in the standard MSF libraries directory, he can simply add arguments
to the VPATH variable. For example:
VPATH += ../GUI/$(OS)

Automatic Windows/Unix filenames handling

MSF build system requires Cygwin under Windows to take advantage of the
makefile program and several Unix utilities (sed, awk, uname, etc). In addition, MSF
currently also uses gcc under Windows to create the dependencies. However, MSF
uses the Microsoft Visual C++ compiler/linker. This raises a pathname problem:

• makefile and gcc -MM (dependencies) use and produce Unix like filenames
(for example /cygdrive/c/Users/My\ Msf/Makefile)

• cl.exe and link.exe require Windows filenames
(for example “C:\Users\My Msf\Makefile”)

The problem is solved by the MSF build system using the cygpath utility when
defining the build rules:

• The dependency rule convert filenames starting with MSF_HOME to their Unix
counterpart

• The compile/link rule convert filenames starting with MSF_HOME to their Win-
dows counterpart

1. Under Windows the libraries makefile will search for likbmylib.lib and libmylib.dll
10 MSF Build System

Automatic Windows/Unix filenames handling
These integrated build rules free the user of bad path names problems and let him
use either Unix or Windows path in the environment variable definition of
MSF_HOME. Note that the definition of other paths like RTI_HOME should use the
Windows convention because these path are not converted in the compile/link rule.
However, libraries external to MSF are not used in the prerequisite generation, and
the Windows path name does not hurt the build system.
MSF Build System 11

	MSF Build System
	Requirements
	How to use
	Configuration
	Environment Variables
	Platform depend build
	Build Configuration

	How it works
	Variables used by the MSF build system
	Input Variables
	Generated Variables
	Standard Variables

	Dependencies
	Libraries naming convention for linking search and prerequisites expression
	Automatic Windows/Unix filenames handling

